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Measured Boundary Layer Transition and Rotor Hover
Performance at Model Scale
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An experiment involving a Mach-scaled,

11.08 ft. diameter rotor was performed in hover during the

summer of 2016 at NASA Langley Research Center. The experiment investigated the hover performance
as a function of the laminar to turbulent transition state of the boundary layer, including both natural and
fixed transition cases. The boundary layer transition locations were measured on both the upper and lower
aerodynamic surfaces simultaneously. The measurements were enabled by recent advances in infrared sensor
sensitivity and stability. The infrared thermography measurement technique was enhanced by a paintable
blade surface heater, as well as a new high-sensitivity long wave infrared camera. The measured transition
locations showed extensive amounts, x/c > 0.90, of laminar flow on the lower surface at moderate to high thrust
(Ct/0 > 0.068) for the full blade radius. The upper surface showed large amounts, x/c > 0.50, of laminar flow
at the blade tip for low thrust (Ct/c < 0.045). The objective of this paper is to provide an experimental data
set for comparisons to newly developed and implemented rotor boundary layer transition models in CFD and
rotor design tools. The data is expected to be used as part of the AIAA Rotorcraft Simulation Working Group.
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Xtru—0.65 Transition location, x/c, upper surface, r/R=0.65

*Research Scientist, NASA Langley Research Center, Hampton ,VA 23681
Sr. Research Scientist, NASA Langley Research Center, Hampton ,VA 23681
This is a work of the U.S. Government and is not subject to copyright protection in the U.S. AMRDEC Public Release Control Number PRXXX.
Distribution statement A. Approved for public release. Trade names and trademarks are used in this report for identification only. Their usage does
not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration or the U.S. AMRDEC.

1 of 36

American Institute of Aeronautics and Astronautics



Xiru—0.72 Transition location, x/c, upper surface, r/R=0.72
Xiru—0.90 Transition location, x/c, upper surface, r/R=0.90

p air density, slug/ ft3
c area weighted solidity

I. Introduction

The prediction of rotorcraft hover performance remains a technical challenge for the rotorcraft community. The
challenge, in part, is due to a lack of a comprehensive validation data set for comparison to predictions. While this
paper does not present such a data set, it begins to provide a better understanding of the measurements required to
establish a validation data set, especially in detailing the importance of tracking the transition location on the upper
and lower aerodynamic surfaces of the blades.

As a result, the key contribution of the present work is detailed measurements of the boundary layer transition
locations as a function of rotor thrust. Measuring transition on rotor blades is nothing new, and the work of Boatwright
et al., Ref. 1 serves as an excellent early (1974) example of an attempt to understand how much laminar flow exists
on a full-scale rotor (in this case using chemical sublimation flow visualization). At model scale, the visualization of
laminar separation and forced transition was done using oil flow, sublimation, and liquid crystals by Martin, Ref. 2.
These early efforts typically showed extensive amounts of laminar flow developing at both model and full scale. Recent
advances in IR thermography led to the tests in 2014 and 2016 by Richter et al., Ref. 3,4. The 2016 paper detailed
the boundary layer transition locations over the rotor radius at full-scale in hover. The test by Richter also measured
extensive amounts of laminar flow on the lower surface of a full-scale BK-117-type rotor in hover. Aside from these
tests only a limited amount of research has been performed in the prior years to measure laminar flow on a rotor, see
Refs. 5-7. In comparison, a significant amount of research has been focused on induced power reduction through
planform variation. In part, the limited amount of rotor laminar flow research is due to the notion that high free-stream
turbulence and blade surface roughness due to manufacturing tolerances and erosion would prevent laminar flow
from being achieved in flight. While these are many of the same challenges faced by the fixed-wing aerodynamics
community, the rotor blade boundary layer has additional factors to consider, such as large spanwise variation of twist,
Reynolds and Mach numbers, and airfoil shape. At model-scale with fairly low Reynolds numbers on the inboard
part of the blade, laminar separation bubbles can force early transition. At full-scale, the higher Reynolds numbers at
the tip may cause early transition and less laminar flow at full-scale than at model-scale. These competing Reynolds
number effects require that the boundary layer state be measured for the full blade radius during hover performance
tests for all scales.

The objective of this paper is to provide a preliminary experimental data set of boundary layer transition locations
for comparisons to newly developed and implemented rotor transition models in CFD. The paper presents experimental
transition locations of a model scale rotor measured via an improved infrared (IR) thermography technique. The
improved IR thermography technique utilizes a paint-based heater coating to generate the temperature differential
required to measure the transition locations. As a proof of concept, the heater coating was retrofitted to the existing
blade surface. While the surface coating was thin, approximately 2-3 mils thick, the buss bars on the trailing edge
roughly tripled the trailing-edge thickness. As a result, the transition locations presented in this paper shall be treated
as preliminary data used to identify the transition characteristics and global trends.

II. Test Overview

A Mach-scale hover test was conducted in the NASA LaRC Rotor Test Cell (RTC) during the Summer of 2016.
Boundary layer transition locations were acquired on the upper and lower aerodynamic surfaces simultaneously via
IR thermography. The hover performance was measured for natural and forced transition cases.

A. Test Setup

The RTC is a large chamber measuring 40 ft wide, 68 ft long and 43 ft tall that is part of the NASA 14- by 22-Foot
Subsonic Tunnel facility. The test used the General Rotor Model System (GRMS), a rotor drive system that can be fully
enclosed within a fuselage shell. As described by Murrill (Ref. 8), the system is powered by two 75 hp water-cooled
variable frequency electric motors and is capable of driving a rotor up to a 13.2 ft diameter through either a 5.47:1
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high-speed transmission or a 6.90:1 low-speed transmission. Cooling for the motors is provided by an external water
chiller, and lubrication for the transmission is supplied from an external lube cart. Two internal six-component strain
gage force and moment balances are used for measuring the fuselage and rotor aerodynamic loads independently. The
NASA T2.5MKXXX rotor balance was used to measure the six-component rotor loads. The balance specifications
are given in Table 1. The first order thrust and torque are measured by the normal force and yawing moment balance
components. Based on the balance calibration accuracies, the accuracy of rotor figure of merit is calculated to be
40.005 — 0.010 depending on the measured dimensional thrust and torque.

Table 1. NASA LaRC T2.5MK XXX limits and accuracy. The accuracy is stated as a percentage of full scale at 95% confidence.

Force/Moment  Calibration Full Scale Accuracy
(Ib) or (in-1b) (% Full Scale)

Normal (Thrust) 41000 0.25
Axial £500 0.46
Pitch +11091 0.15
Roll +4323 0.20
Yaw (Torque) +7922 0.17
Side +300 0.76

The GRMS was installed using a sting-mounted configuration, employing a dogleg adapter that was enclosed in
the fuselage to attach to a long support sting. A schematic of test setup is shown in Figs. 1-2. An image of the test
setup is provided in Fig. 3. The sting was mounted in a cantilevered manner to the movable mast installed in a facility
model cart. The horizontal distance from the fore and aft walls was 28 and 40 ft, respectively. The side walls were 20
ft from the rotor axis. The model cart was powered such that the vertical mast supporting the sting could raise, lower
and pitch, permitting nondimensional rotor height values between 2.10 and 3.89 z/R to be achieved while holding the
rotor disk parallel to the floor surface. During this test, a fixed height of zZ/R = 3.15 (17.5 fr) was tested.

B. Rotor Blades

A four-bladed fully articulated hub with a 66.50 inch rotor radius was used for this test. The rotor was operated at 1150
RPM, giving a tip velocity of 666 ft/s (Mach 0.58, which is close to where a typical helicopter rotor tip operates at 6000
feet pressure altitude 95 degrees F). The rotor blades were acquired specifically for a Pressure Sensitive Paint (PSP)
validation test and were used in a previous hover test by Wong et al., see Ref. 9. The blade used Government RC-series
airfoils with the planform shown in Figure 4. The rotor had a linear twist of -14 degrees starting at /R = 0.252 and
ending at the rotor tip. The blade had a chord length of 5.45 inches with a 30 degree tip sweep and a 3.27 inch tip
chord length. The blade characteristics are summarized in Table 2. Inboard of r/R = 0.252, a connector fairing is used
to accommodate wiring from dynamic pressure sensors within two pressure instrumented blades and is present on all
four blades for symmetry. The flap and lead/lag hinges are colocated 3.00 inches from the hub center.

Table 2. PSP Rotor Blade Characteristics.

Rotational Speed (RPM) 1150

Number of Blades 4
Blade Radius (in) 66.50
Blade Chord (in) 5.45
Rotor Airfoil RC series
Blade Twist Distribution Linear
Blade Twist (deg) -14
Tip Speed (ft/s) 666

Hover tip Mach number 0.58
Rotor Area Solidity (o) 0.1033

For the forced transition cases, trip dots were placed at x/c = 0.05 on the upper and lower surface. The dots had
a diameter of 0.050 inches and a spacing of 0.100 inches. The trip dot height was varied as a function of rotor radius
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to force transition and to minimize device drag. From r/R = 0.25 — 0.50 the trip height was A = 9.9 mils and from
r/R = 0.50 — 1.00 the trip height was & = 5.0 mils. The installation of the trip dots is shown on the lower surface in
Figs. 5 and 6 for the root and tip sections of the blade, respectively. The surface roughness of the blades was measured
using a portable stylus trace. The trace distance for each measurement was 0.1 inches in the chordwise direction. The
average blade surface roughness of 15 locations was measured to be R, = 30 uin.

C. Infrared Thermography Setup

The boundary layer transition locations were measured using IR thermography. IR thermography requires a tempera-
ture differential between the aerodynamic surface and the ambient flow. The difference in heat transfer rate between
a laminar and turbulent boundary layer results in a slightly different surface temperature, which can be detected by an
IR camera of sufficient sensitivity. To create the temperature differential, one of the four blades was retrofitted with a
urethane paint-based highly conductive coating to serve as a heater. The heater was divided into two spanwise zones
and powered through a slip ring by a power supply in the fixed frame. The heating zones could be independently
controlled to provide the proper heating levels required during rotation. By varying the heater power level, the signal-
to-noise ratio of the images could be significantly increased. The voltage was supplied using flat braided copper wire
buss bars that were routed along the trailing edge on the upper and lower surfaces. The two independent radial heater
zones are depicted in Figure 7. The inboard zone, Zone 2, covered 1/R=0.40-0.70 and outboard zone, Zone 1, covered
r/R=0.70-1.00. The Zone 1 buss bars were routed at x/c= 0.95 and the Zone 2 buss bars were routed at x/c= 0.89.
The buss bar width was 0.30 inches with a height of 0.030 inches. The buss bars were joined in parallel to electrical
connectors at the blade root prior to passing through an electrical slip ring mounted in the rotor shaft. Each zone was
connected to a remotely controlled 300 voltage direct current (VDC), 5.2 amp power supply in fixed frame on the floor
of the RTC.

Two FLIR Systems™ SC6701 Strained Layer Superlattice (SLS) cameras were used to acquire simultaneous
images of the upper and lower surface of the blade. The cameras have a high sensitivity in the long wave infrared
(LWIR) spectral range. Each camera, with a resolution of 640 x 512 pixels, was fitted with an F/2 aperture, 50 mm
focal length lens yielding a spatial resolution of 0.055 in/pixel. The lenses were remotely focused using an external
belt driven by a piezoelectric rotary actuator. Due to limited depth of field with the F/2 aperture lens, remote focusing
was required at each thrust condition to account for the blade elastic deflections. One of the cameras was mounted to
the ceiling of the RTC while the other camera was mounted on the floor of the RTC. The camera positions and their
corresponding fields of view are shown in Figs. 1-2. The cameras were synced with the rotor RPM using the Rotor
Azimuth Synchronization Program (RASP), Ref. 10, to acquire images once per revolution. A series of approximately
575 images per camera were recorded at each thrust condition.

D. Fuselage

The fuselage shell was the NASA ROBIN-Mod7 fuselage, an analytically-defined helicopter fuselage model that has
been used in numerous prior tests and is meant to represent a generic transport helicopter. The basic dimensions of the
fuselage are given in Fig. 8. The rotor shaft angle is -3.5 degrees nose down. The tail cone cap shown aft of FS 105.0
was not installed since the model was mounted on the sting adapter. Greater detail of the fuselage geometry can be
found in the publication by Schaeffler et al. (Ref. 11).

E. Data Acquisition Systems

The 14x22 facility Data Acquisition System (DAS) was used to acquire the steady-state force and moment data from
the rotor and fuselage balances. A detailed description of the 14x22 DAS is provided by Quinto and Orie, Ref. 12. For
this test, each data point was taken over a 30 second record length (2300 rotor revolutions) at 50 samples per second.
All of the acquired data was passed through a one hertz low-pass filter and 512 analog gain was applied to the rotor
and fuselage balances.

III. Results

The test results are given in tabular format in Tables 3-11. The data is separated by the test’s run number. The table
label indicates whether the data is for a natural transition or fixed transition case.

4 of 36

American Institute of Aeronautics and Astronautics



A. Hover Performance

The measured rotor hover performance is shown in Fig. 9 in terms of figure of merit as a function of solidity weighted
thrust coefficient. The error bars are calculated from the rotor balance calibration accuracies given in Table 1. The
natural transition case is represented by the black squares. A maximum figure of merit of 0.79 was measured at
Cr/c6 =0.10. In addition to the natural transition case, data were acquired for three forced transition cases. In each
case, transition was forced at x/c=0.05. The three forced transition cases were 1) lower surface only (blue triangles),
2) upper surface only (red circles) and 3) both upper and lower surface (green diamonds).

To calculate the reduction in figure of merit at a given thrust condition, a third-order polynomial was fit to the
experimental data. The resulting curves are shown by the solid lines on the left vertical axis in Fig. 10. The dashed
curves are the calculated reduction in figure of merit from the natural transition case shown on the right vertical axis.
The blue dashed curve, AL, is the reduction in figure of merit for fixed transition on only the lower surface. The red
dashed curve, AU, is the reduction in figure of merit for fixed transition on only the upper surface. The red and blue
dashed line, AU + AL, represents the summation of the two previous curves. The green curve, AUL, is the measured
reduction in figure of merit for fixed transition on the upper and lower surfaces combined.

At high thrust, Ct/c = 0.095, the figure of merit was decreased by 3.1 counts or 3.7% when fixing transition on
the lower surface only. Fixing transition on the upper surface only resulted in a 3.7 count reduction in figure of merit.
Fixed transition on the upper and lower surfaces combined resulted in a decrease in figure of merit of 4.9 counts. At
low thrust, Ct/c = 0.040, the measured reduction in figure of merit was 3.5 and 5.5 counts for the lower and upper
surfaces, respectively. Fixed transition on the upper and lower surfaces combined resulted in a 7.1 count decrease in
figure of merit.

A brief study of the minimal trip height was conducted on the lower surface from 1/R=0.80 to the tip. The forced
transition cases were verified by using the IR thermography technique to ensure the blade was in fact turbulent at all
radial stations. Originally, a trip height of 4 = 1.1 mils was used at x/c=0.05, but the IR images showed transition was
not forced. The trip height was increase to 7 = 5.0 mils and forced transition was confirmed. The same study was not
performed on the upper surface, but it is suspected that the 2 = 1.1 mils trip height would have forced transition due
to the adverse pressure gradient on the upper surface.

B. Transition Locations

The transition locations were measured on the upper and lower surface for each thrust condition. Data were only
available outboard of r/R=0.40 where the heater coating was present. The 575 instantaneous images were registered
to a common reference to account for global translations and rotations of the model and blades. The registered images
were then averaged to a single image to increase the signal-to-noise ratio for each thrust condition. A sample of the
infrared thermography images for the upper and lower surfaces at Cr/c = 0.064 is shown in Fig. 12. The dark
areas represent a turbulent boundary layer or cooler surface temperature a result of the greater heat transfer in the
turbulent boundary layer. The transition locations were extracted manually from the averaged image by inspection of
the gray scale image. A profile slice through the red line in Fig. 12 is given in Fig. 13. The point along the profile
that was extracted as the transition location is the end of the transition band where the flow is fully-turbulent not the
start of transition, see Richter and Schulein in Ref. 3 for a detailed description of the data processing technique. The
chordwise transition locations were converted to blade coordinates by the appropriate scaling factors.

Comparison of the images of the heated blade to a nonheated blade shows that the nonheated blade has a superior
image quality. The nonuniformities in the image are caused by local variations in electrical resistance of the heatable
coating. The variation in resistance results in local hot and cold spots on the blade surface. This phenomenon is
magnified at the tip where the taper of blade causes the buss bars to be closer together. The shorter buss bar separation
distance results in an increased power density of the heater near the tip. The nonuniformities could likely be corrected
with background subtraction of a wind-off image or other image processing techniques. At the present time, no
formal image processing techniques have been attempted to improve the image quality other than averaging. Despite
the challenges with the heater coating, the image quality was sufficient enough to extract the transition locations at
numerous thrust conditions without stopping the rotor or changing the rotor RPM to heat the blades. It also allowed for
hundreds of images to be acquired at each thrust conditions. For the nonheated blade data acquisition is only possible
for several seconds before the ambient and surface temperature of the blade are equal.

In each of the Figs. 15-35, the measured chordwise transition locations are plotted on the vertical axis where the
upper surface is a positive chordwise value and the lower surface is given a negative chordwise value. The horizontal
axis represents the rotor radius. At the top of each figure, the blade planform is provided to quickly identify the airfoils
at each radial station. The area between the two curves is the amount of laminar flow present on the rotor for the
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given thrust condition. Small transition wedges are not included in the measured transition locations if they could be
explicitly mapped to a local blade surface finish defect. Reliable data is not available aft of x/c=0.90 due to installation
of the buss bars for the heaters.

The data is also presented as a function of thrust for three radial stations, r/R=0.65,0.72 and 0.90, in Figs. 36-
38. The solid blue curve represents the chordwise transition location on the upper surface and the dashed red line
represents the measured transition location on the lower surface. The three radial stations are from sections of the
blade, which have different airfoils. The airfoil name and nondimensional shape is given at the bottom of each figure.
These data are also summarized in tabular format in Table 3. The three radial stations are representative slices of the
blade and quickly show the global transition trends of the rotor. They show that the performance curve can be split
into two regions, low and high thrust at a Cr/c = 0.055. At this thrust condition, the derivative of the chordwise
transition location with respect to thrust is the largest. At low thrust there are moderate amounts (x;,/c = 0.3 — 0.4) of
laminar flow at the root and extensive amount of laminar flow at the tip x;,/c = 0.5 — 0.6. The lower surface exhibits
the opposite trend. The transition locations quickly move aft at the root and midspan of the blade sections around
Cr/6 =0.055. The tip lower surface transition location slowly moves aft up until it is fully laminar at Cy/c = 0.055.

C. Discussion

The measured hover performance for the fixed combined upper and lower transition case is not a summation of the
independent fixed upper and lower surface cases. At low thrust on the lower surface, transition is only actually forced
on the lower tip region (r/R > 0.85) of the blade since the rest of the lower surface is already turbulent. At low thrust
on the upper surface, forced transition is only imposed from r/R = 0.70 — 1.00. Therefore, the expected result that
the profile power increases from a reduction in laminar flow would have a greater impact on hover performance for
the fixed upper surface than the lower surface at low thrust is measured. At high thrust, the entire upper surface is
turbulent and the lower surface is fully laminar. However, fixed transition on the upper surface only was measured to
have a slightly greater impact than fixed transition on only the lower surface. It is possible that the added boundary
layer displacement thickness at the leading edge of the upper surface due to the trip dots created turbulent boundary
layer separation at the trailing edge. The reduction in figure of merit is then a result of drag due to separation not
laminar flow. Although these factors are coupled by the boundary layer thickness rate increase for a turbulent versus
laminar boundary layer. For the upper surface inboard airfoils, laminar separation bubbles are likely to form due to
the low Reynolds numbers. In this region of the blade, the trip dots could stabilize the boundary layer and prevent the
laminar separation bubble from forming thus eliminating the drag due to the separation bubble. Yet, these explanations
do not explain why the combined fixed upper and lower surface performance is not a summation of the independently
fixed cases.

The competing inboard versus outboard and low versus high thrust effects on the hover performance make it
difficult to isolate the effects of transition. By inspection of the measured natural transition locations, an approximate
figure of merit curve is estimated for a fully turbulent rotor. The fully turbulent curve is an attempt to isolate the
effect of transition on hover performance. The black dashed curve shown in Fig. 11, is estimated by making several
assumptions. First, the upper surface is fully turbulent at high thrust (Cr/c > 0.07). Therefore, the lower surface
forced transition case is assumed to be equal to the fully turbulent case. The next assumption is that at low thrust
(Ct/o < 0.05), both the upper and lower surface have significant amounts of laminar flow at the rotor tip and the
trip dots do not create trailing edge separation. At Cr/c = 0.03 the fully turbulent curve is approximated by the
summation of the two independent fixed cases. At Ct/c = 0.05 the fully turbulent curve is approximated as equal to
the upper surface only fixed data. Obviously, the assumptions above are approximations and do not represent measured
experimental data. The only true unaltered data is the natural transition case. In conjunction with measured locations,
the natural transition case should be used for comparisons to predictions.

A more detailed trip dot height study is required to fully understand the fixed transition data. The study must
account for Reynolds number effects, airfoil changes and pressure gradients; therefore, detailed IR thermography
images are required of the leading- and trailing-edge regions of the full rotor radius. At the leading edge, the IR
images should document the boundary layer state and any separation bubbles. At the trailing edge, the IR images
should document the extent of trailing-edge separation. Higher spatial resolution measurements than were acquired
during this test would be required to make these conclusions. In addition, the electrical buss bar placement at the
trailing edge prevented measurements of trailing-edge separation during this test.
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IV. Conclusions

A Mach-scaled rotor test was completed with the rotor performance and boundary layer transition locations mea-
sured as a function of rotor thrust. An improvement to the IR thermography technique to measure boundary layer
transition on a rotor was presented. The use of a paintable heater and new LWIR cameras made it feasible to acquire
large amounts of boundary layer transition data.

The data presented is intended to be a preliminary data set used for the development and implementation of
boundary layer transition tools in CFD codes. The measured transition locations showed extensive amounts, x/c >
0.90, of laminar flow on the lower surface at moderate to high thrust (Cr/c > 0.068) conditions for the full blade
radius. The upper surface showed large amounts, x/c > 0.50, of laminar flow at the blade tip for low thrust (Ct/c <
0.045). A peak figure of merit of 0.79 was measured for the natural transition case at (Cy/c = 0.10). The test data
highlights the importance of measuring the boundary layer state and its effect on the measured hover performance. At
high thrust, Cr/c = 0.090, the figure of merit was decreased by the 3.1 counts or 3.7% when fixing transition only on
the lower surface. The figure of merit was further reduced when fixing transition on the upper surface. The fixed upper
surface data is likely influenced by trailing-edge separation; therefore, a more detailed experimental study is required
to understand the fixed transition data cases. The measured natural transition locations on the upper and lower surface
for the entire rotor radius are required to understand the measured hover performance. Blindly adding trip dots to force
transition could yield unexpected results not representative of a fully turbulent rotor.

The government is currently designing and fabricating a new blade set with identical planform and airfoils with
embedded heaters for the purpose of generating a validation data set. The new embedded heaters are designed to
maximize the temperature uniformity and allow for measurements near the trailing-edge and tip regions of the blade.
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Figure 1. Schematic of the experimental test setup in the RTC- Side View.

28 ft

20 ft

il

Figure 2. Schematic of the experimental test setup in the RTC- Top View.
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Pitch & Twist

Figure 3. Picture of the experimental test setup.
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Figure 4. PSP Blade Planform, inches.

Figure 5. Blade Root Lower Surface Trip Dots, h=9.9 mil.
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Figure 6. Blade Tip Lower Surface Trip Dots, h=5.0 mil.
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Figure 10. Effect of Forced Transition on Hover Performance.
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Figure 12. Sample infrared thermography image of lower surface , Cr/c = 0.035.
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Figure 13. Line profile of image intensity and transition locations.

Figure 14. Sample infrared thermography image of without heater coating, lower surface Cr/c = 0.035.
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Figure 15. Measured Transition Locations, Cr/c = 0.030.
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Figure 16. Measured Transition Locations, Cr/c = 0.035.
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Figure 18. Measured Transition Locations, Ct/c = 0.045.
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Figure 20. Measured Transition Locations, Cr/c = 0.055.
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Figure 22. Measured Transition Locations, Cr/c = 0.062.
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Figure 24. Measured Transition Locations, Cr/c = 0.066.
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Figure 25. Measured Transition Locations, Ct/c = 0.068.
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Figure 26. Measured Transition Locations, Cr/c = 0.070.
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Figure 27. Measured Transition Locations, Cr/c = 0.072.
l 66.500 I
65.1% 80.1% 95%
0% 252% 70.1% 85.1% 100%
1/4 Chord
3.000 , 4.870 RC(4)-12 blend| RC(4)-10 [blend| ~RC(6)-08
o | - §
2 _(ﬁ— -l - — - = - - —t
= T \i 30°
Center of . 4
Rotation = T N _f\
5.450 3270
100 q— — — — — — — — — — — — — — — — — — — — - =
E C,/o=0.074 z
075 4~ — — 1T 777777777777777777777777777777 =
0.50 94— UpperSurface — — — — — — — — — — — — — — — — — — — — — — — — — — — — =
025~ - + 7777777777 &-0-0-8 —g- & pg—o-088 8009g E
0.00 ] N s ’ ' ' - ._D—D- ' ' = &D_au DS*r\.-E
I 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
025 4— — — J{ 777777777777777777777777777777 -
-0.50 94— Lower Surface — — — — — — — — — — — — — — — — — — — — — — — — — — — — =
0 F — — 4 - — — — — - — — — — - — — — — - — — — - - = — - = - — - — = -
100 5 98-8 - -8 —3 —g — 8— & — & 8-

Figure 28. Measured Transition Locations, Cr/c = 0.074.
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Figure 30. Measured Transition Locations, Cr/c = 0.078.
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Figure 29. Measured Transition Locations, Cr/c = 0.076.
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Figure 31. Measured Transition Locations, Ct/c = 0.080.
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Figure 32. Measured Transition Locations, Cr/c = 0.085.
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Figure 33. Measured Transition Locations, Ct/c = 0.090.
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Figure 34. Measured Transition Locations, Cr/c = 0.095.
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Figure 35. Measured Transition Locations, Cr/c = 0.100.
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Figure 36. Measured Transition Locations, r/R=0.65.
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Figure 37. Measured Transition Locations, r/R=0.72.
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Figure 38. Measured Transition Locations, r/R=0.90.
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